Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1004, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783732

RESUMO

Division of labor (DOL) is a characteristic trait of insect societies, where tasks are generally performed by specialized individuals. Inside workers focus on brood or nest care, while others take risks by foraging outside. Theory proposes that workers have different thresholds to perform certain tasks when confronted with task-related stimuli, leading to specialization and consequently DOL. Workers are presumed to vary in their response to task-related cues rather than in how they perceive such information. Here, we test the hypothesis that DOL instead stems from workers varying in their efficiency to detect stimuli of specific tasks. We use transcriptomics to measure mRNA expression levels in the antennae and brain of nurses and foragers of the ant Temnothorax longispinosus. We find seven times as many genes to be differentially expressed between behavioral phenotypes in the antennae compared to the brain. Moreover, half of all odorant receptors are differentially expressed, with an overrepresentation of the 9-exon gene family upregulated in the antennae of nurses. Nurses and foragers thus apparently differ in the perception of their olfactory environment and task-related signals. Our study supports the hypothesis that antennal sensory filters predispose workers to specialize in specific tasks.


Assuntos
Formigas , Receptores Odorantes , Humanos , Animais , Formigas/genética , Receptores Odorantes/genética , Expressão Gênica , Perfilação da Expressão Gênica , Odorantes
2.
Mol Ecol ; 32(21): 5877-5889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795937

RESUMO

Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.


Assuntos
Formigas , Cestoides , Parasitos , Animais , Interações Hospedeiro-Parasita/genética , Proteoma/genética , Proteômica , Formigas/genética
3.
Mol Ecol ; 32(22): 6027-6043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37830492

RESUMO

Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste.


Assuntos
Formigas , MicroRNAs , Animais , RNA de Interação com Piwi , Formigas/genética , Fertilidade/genética , MicroRNAs/genética , Células Germinativas
4.
Mol Ecol ; 32(18): 5170-5185, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540194

RESUMO

Insect social parasites are characterized by exploiting the hosts' social behaviour. Why exactly hosts direct their caring behaviour towards these parasites and their offspring remains largely unstudied. One hypothesis is that hosts do not perceive their social environment as altered and accept the parasitic colony as their own. We used the ant Leptothorax acervorum, host of the dulotic, obligate social parasite Harpagoxenus sublaevis, to shed light on molecular mechanisms underlying behavioural exploitation by contrasting tissue-specific transcriptomes in young host workers. Host pupae were experimentally (re-)introduced into fragments of their original, another conspecific, heterospecific or parasitic colony. Brain and antennal mRNA was extracted and sequenced from adult ants after they had lived in the experimental colony for at least 50 days after eclosion. The resulting transcriptomes of L. acervorum revealed that ants were indeed affected by their social environment. Host brain transcriptomes were altered by the presence of social parasites, suggesting that the parasitic environment influences brain activity, which may be linked to behavioural changes. Transcriptional activity in the antennae changed most with the presence of unrelated individuals, regardless of whether they were conspecifics or parasites. This suggests early priming of odour perception, which was further supported by sensory perception of odour as an enriched function of differentially expressed genes. Furthermore, gene expression in the antennae, but not in the brain corresponded to ant worker behaviour before sampling. Our study demonstrated that the exploitation of social behaviours by brood parasites correlates with transcriptomic alterations in the central and peripheral nervous systems.


Assuntos
Formigas , Parasitos , Humanos , Animais , Formigas/genética , Parasitos/genética , Transcriptoma/genética , Interações Hospedeiro-Parasita/genética , Comportamento Social , Encéfalo
5.
Biol Lett ; 19(7): 20230176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403711

RESUMO

In social hymenopterans, workers specialize in different tasks. Whether a worker nurses the brood or forages is influenced by the responsiveness for task-related cues which in turn is determined by gene expression. Task choice is dynamic and changes throughout a worker's life, e.g. with age or in response to increased demands for certain tasks. Behavioural switches require the ability to adjust gene expression but the mechanisms regulating such transcriptional adaptations remain elusive. We investigated the role of histone acetylation in task specialization and behavioural flexibility in Temnothorax longispinosus ants. By inhibiting p300/CBP histone acetyltransferases (HAT) and manipulating colony composition, we found that HAT inhibition impairs the ability of older workers to switch to brood care. Yet, HAT inhibition increased the ability of young workers to accelerate their behavioural development and switch to foraging. Our data suggest that HAT in combination with social signals indicating task demands play an important role in modulating behaviour. Elevated HAT activity may contribute to keeping young brood carers from leaving the nest, where they would be exposed to high mortality. These findings shed light on the epigenetic processes underlying behavioural flexibility in animals and provide insight into the mechanisms of task specialization in social insects.


Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento Social
6.
Mol Ecol ; 32(15): 4412-4426, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222006

RESUMO

Parasites with complex life cycles are known to induce phenotypic changes in their intermediate hosts to increase transmission to the final host. The magnitude of these changes could increase with the number of parasites, which would be beneficial to co-infecting parasites. Yet, adverse effects of high parasite load (i.e. many parasites in a single host) might stress both hosts and parasites (e.g. through an increased immune response). We investigated the consequences of parasite load on the transcriptional activity and morphology of the cestode Anomotaenia brevis and its intermediate host, the ant Temnothorax nylanderi. We demonstrated that many differentially expressed host genes shifted with parasite load, and their functions indicate a stronger immune response and fight against oxidative stress in heavily infected hosts. The expression of other host genes responded to infection in an all-or-nothing manner, as did the morphology of the host workers. However, the cestodes became smaller when they competed with other parasites for resources from a single host. Their expression profile further indicated shifts in host immune avoidance, starvation resistance and vesicle-mediated transport. In summary, our study reveals clear consequences of parasite load and highlights specific processes and traits affected by this.


Assuntos
Formigas , Cestoides , Parasitos , Animais , Formigas/genética , Interações Hospedeiro-Parasita/genética , Cestoides/genética , Carga Parasitária
7.
Insect Sci ; 30(1): 241-250, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35696548

RESUMO

Animals often search for food more efficiently with experience. However, the contribution of experience to foraging success under direct competition has rarely been examined. Here we used colonies of an individually foraging desert ant to investigate the value of spatial experience. First, we trained worker groups of equal numbers to solve either a complex or a simple maze. We then tested pairs of both groups against one another in reaching a food reward. This task required solving the same complex maze that one of the groups had been trained in, to determine which group would exploit better the food reward. The worker groups previously trained in the complex mazes reached the food reward faster and more of these workers fed on the food than those trained in simple mazes, but only in the intermediate size group. To determine the relative importance of group size versus spatial experience in exploiting food patches, we then tested smaller trained worker groups against larger untrained ones. The larger groups outcompeted the smaller ones, despite the latter's advantage of spatial experience. The contribution of spatial experience, as found here, appears to be small, and depends on group size: an advantage of a few workers of the untrained group over the trained group negates its benefits.


Assuntos
Formigas , Animais , Alimentos , Comportamento Animal
8.
Mol Ecol ; 31(19): 4991-5004, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35920076

RESUMO

The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialized morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in nonparasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of coexpressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.


Assuntos
Formigas , Características de História de Vida , Animais , Formigas/genética , Abelhas/genética , Comportamento Animal , Evolução Biológica , Transcriptoma/genética
9.
Biology (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741418

RESUMO

Central-place foragers, such as social insects or nesting birds, repeatedly use the same routes from and to their nests when foraging for food. Such species forage more efficiently after accumulating experience. We examined, here, a relatively neglected aspect of such an improvement with experience-the avoidance of pitfall traps. Similar pits are built by antlions, which co-occur with the ants, but they also resemble other natural obstacles. We used the desert ant Cataglyphis niger, common in sandy habitats, and allowed it to forage for three successive runs for a food reward. Ant workers discovered food more slowly and in smaller numbers when pits were in their path. Pit presence also led to longer tracks by ants and slower movement. However, with experience, the ants fell into such pits less often and reached the food more quickly. To understand how past conditions affect current behavior, we investigated whether removing or adding pits led to a different result to that with a constant number of pits. Workers adjusted their behavior immediately when conditions changed. The only carryover effect was the longer tracks crossed by workers after pit removal, possibly resulting from the mismatch between the past and current conditions. Finally, the workers were more likely to fall into pits that were closer to the nest than those that were further away. This is a good example of the advantage that ambush predators can derive from ambushing their prey in specific locations.

10.
Genes (Basel) ; 13(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627304

RESUMO

The gene family of insect olfactory receptors (ORs) has expanded greatly over the course of evolution. ORs enable insects to detect volatile chemicals and therefore play an important role in social interactions, enemy and prey recognition, and foraging. The sequences of several thousand ORs are known, but their specific function or their ligands have only been identified for very few of them. To advance the functional characterization of ORs, we have assembled, curated, and aligned the sequences of 3902 ORs from 21 insect species, which we provide as an annotated online resource. Using functionally characterized proteins from the fly Drosophila melanogaster, the mosquito Anopheles gambiae and the ant Harpegnathos saltator, we identified amino acid positions that best predict response to ligands. We examined the conservation of these predicted relevant residues in all OR subfamilies; the results showed that the subfamilies that expanded strongly in social insects had a high degree of conservation in their binding sites. This suggests that the ORs of social insect families are typically finely tuned and exhibit sensitivity to very similar odorants. Our novel approach provides a powerful tool to exploit functional information from a limited number of genes to study the functional evolution of large gene families.


Assuntos
Receptores Odorantes , Animais , Drosophila melanogaster/metabolismo , Proteínas de Insetos/metabolismo , Insetos/genética , Insetos/metabolismo , Ligantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
11.
Curr Opin Insect Sci ; 50: 100889, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181562

RESUMO

Social parasitism describes a fascinating way of life in which species exploit the altruistic behaviour of closely related, social species. Social parasites have repeatedly evolved in the social Hymenoptera, including ants, bees, and wasps. The common ancestry and shared (social) environment with their hosts facilitates the study of molecular adaptations to the parasitic lifestyle. Moreover, when social parasites are widespread and virulent, they exert strong selection pressure on their hosts, leading to the evolution of defense mechanisms and triggering a coevolutionary arms race. Recent advances in sequencing technology now make it possible to study the molecular basis of this coevolutionary process. In addition to describing the latest developments, we highlight open research questions that could be tackled with genomic, transcriptomic, or epigenetic data.


Assuntos
Formigas , Parasitos , Vespas , Animais , Formigas/genética , Formigas/parasitologia , Abelhas , Interações Hospedeiro-Parasita/genética , Simbiose , Vespas/genética
12.
Integr Zool ; 17(5): 704-714, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34958517

RESUMO

Theories of forgetting highlight 2 active mechanisms through which animals forget prior knowledge by reciprocal disruption of memories. According to "proactive interference," information learned previously interferes with the acquisition of new information, whereas "retroactive interference" suggests that newly gathered information interferes with already existing information. Our goal was to examine the possible effect of both mechanisms in the desert ant Cataglyphis niger, which does not use pheromone recruitment, when learning spatial information while searching for food in a maze. Our experiment indicated that neither proactive nor retroactive interference took place in this system although this awaits confirmation with individual-level learning assays. Rather, the ants' persistence or readiness to search for food grew with successive runs in the maze. Elevated persistence led to more ant workers arriving at the food when retested a day later, even if the maze was shifted between runs. We support this finding in a second experiment, where ant workers reached the food reward at the maze end in higher numbers after encountering food in the maze entry compared to a treatment, in which food was present only at the maze end. This result suggests that spatial learning and search persistence are 2 parallel behavioral mechanisms, both assisting foraging ants. We suggest that their relative contribution should depend on habitat complexity.


Assuntos
Formigas , Animais , Clima Desértico , Comportamento Alimentar , Alimentos , Aprendizagem , Feromônios
13.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34668533

RESUMO

The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts', potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.


Assuntos
Formigas , Receptores Odorantes , Animais , Formigas/genética , Comportamento Animal/fisiologia , Evolução Molecular , Receptores Odorantes/genética , Comportamento Social
14.
BMC Genomics ; 22(1): 871, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861814

RESUMO

BACKGROUND: In insect societies, queens monopolize reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers of many ant species. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. Thus, we investigated the role of histone acetylation in regulating worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (TSA), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. RESULTS: Workers survived better in queenless colonies. They also developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with the chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 altered the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. CONCLUSION: Our results suggest that histone acetylation is involved in the molecular regulation of worker reproduction, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.


Assuntos
Formigas , Acetilação , Animais , Formigas/genética , Feminino , Fertilidade , Histonas , Humanos , Reprodução/genética , Comportamento Social
15.
R Soc Open Sci ; 8(5): 202118, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34017599

RESUMO

Social insects are hosts of diverse parasites, but the influence of these parasites on phenotypic host traits is not yet well understood. Here, we tracked the survival of tapeworm-infected ant workers, their uninfected nest-mates and of ants from unparasitized colonies. Our multi-year study on the ant Temnothorax nylanderi, the intermediate host of the tapeworm Anomotaenia brevis, revealed a prolonged lifespan of infected workers compared with their uninfected peers. Intriguingly, their survival over 3 years did not differ from those of (uninfected) queens, whose lifespan can reach two decades. By contrast, uninfected workers from parasitized colonies suffered from increased mortality compared with uninfected workers from unparasitized colonies. Infected workers exhibited a metabolic rate and lipid content similar to young workers in this species, and they received more social care than uninfected workers and queens in their colonies. This increased attention could be mediated by their deviant chemical profile, which we determined to elicit more interest from uninfected nest-mates in a separate experiment. In conclusion, our study demonstrates an extreme lifespan extension in a social host following tapeworm infection, which appears to enable host workers to retain traits typical for young workers.

16.
Mol Ecol ; 30(10): 2378-2389, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772940

RESUMO

Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestmates, increased the duration of brood contact, and reduced the time spent self-grooming, an important sanitary behaviour. Our brain transcriptome analysis revealed that only a few behaviour-related genes had altered their expression with isolation time. Rather, many genes linked to immune system functioning and stress response had been downregulated. This probably sensitizes isolated individuals to various stressors, in particular because isolated workers exhibit reduced sanitary behaviour. We provide evidence of the diverse consequences of social isolation in social insects, some of which resemble those found in social mammals, suggesting a general link between social well-being, stress tolerance, and immune competence in social animals.


Assuntos
Formigas , Comportamento Animal , Animais , Formigas/genética , Regulação para Baixo , Humanos , Insetos , Comportamento Social , Isolamento Social
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190728, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678016

RESUMO

The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Envelhecimento/genética , Formigas/fisiologia , Abelhas/fisiologia , Fertilidade/genética , Isópteros/fisiologia , Transcriptoma/fisiologia , Animais , Formigas/genética , Abelhas/genética , Perfilação da Expressão Gênica , Isópteros/genética , Especificidade da Espécie
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190736, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678017

RESUMO

The evolution of sociality in insects caused a divergence in lifespan between reproductive and non-reproductive castes. Ant queens can live for decades, while most workers survive only weeks to a few years. In most organisms, longevity is traded-off with reproduction, but in social insects, these two life-history traits are positively linked. Once fertility is induced in workers, e.g. by queen removal, worker lifespan increases. The molecular regulation of this positive link between fecundity and longevity and generally the molecular underpinnings of caste-specific senescence are not well understood. Here, we investigate the transcriptomic regulation of lifespan and reproduction in fat bodies of three worker groups in the ant Temnothorax rugatulus. In a long-term experiment, workers that became fertile in the absence of the queen showed increased survival and upregulation of genes involved in longevity and fecundity pathways. Interestingly, workers that re-joined their queen after months exhibited intermediate ovary development, but retained a high expression of longevity and fecundity genes. Strikingly, the queen's presence causes a general downregulation of genes in worker fat bodies. Our findings point to long-term consequences of fertility induction in workers, even after re-joining their queen. Moreover, we reveal longevity genes and pathways modulated during insect social evolution. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Formigas/fisiologia , Características de História de Vida , Longevidade/genética , Animais , Fertilidade , Comportamento Social
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190735, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678018

RESUMO

Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. In ants, the most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part owing to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers to oxidative stress. Oxidative stress drastically reduced survival, but this effect was less pronounced in leaf-cutting ant workers from queenless nests. We also found that, irrespective of oxidative stress, outside workers died earlier than inside workers did, likely because they were older. Since At. colombica workers cannot produce fertile offspring, our results indicate that direct reproduction is not necessary to extend the lives of queenless workers. Our findings suggest that workers are less resilient to oxidative stress in the presence of the queen, and raise questions on the proximate and ultimate mechanisms underlying socially mediated variation in worker lifespan. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Formigas/fisiologia , Herbicidas/efeitos adversos , Oxidantes/efeitos adversos , Estresse Oxidativo , Animais , Especificidade da Espécie , Sobrevida
20.
Mol Ecol ; 30(11): 2676-2688, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742503

RESUMO

Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.


Assuntos
Comunicação Animal , Alimentos , Animais , Abelhas/genética , Encéfalo , Expressão Gênica , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...